Termination w.r.t. Q of the following Term Rewriting System could not be shown:

Q restricted rewrite system:
The TRS R consists of the following rules:

-(x, 0) → x
-(s(x), s(y)) → -(x, y)
min(x, 0) → 0
min(0, y) → 0
min(s(x), s(y)) → s(min(x, y))
twice(0) → 0
twice(s(x)) → s(s(twice(x)))
f(s(x), s(y)) → f(-(y, min(x, y)), s(twice(min(x, y))))
f(s(x), s(y)) → f(-(x, min(x, y)), s(twice(min(x, y))))

Q is empty.


QTRS
  ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

-(x, 0) → x
-(s(x), s(y)) → -(x, y)
min(x, 0) → 0
min(0, y) → 0
min(s(x), s(y)) → s(min(x, y))
twice(0) → 0
twice(s(x)) → s(s(twice(x)))
f(s(x), s(y)) → f(-(y, min(x, y)), s(twice(min(x, y))))
f(s(x), s(y)) → f(-(x, min(x, y)), s(twice(min(x, y))))

Q is empty.

Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

-1(s(x), s(y)) → -1(x, y)
F(s(x), s(y)) → -1(x, min(x, y))
F(s(x), s(y)) → F(-(x, min(x, y)), s(twice(min(x, y))))
MIN(s(x), s(y)) → MIN(x, y)
F(s(x), s(y)) → TWICE(min(x, y))
F(s(x), s(y)) → F(-(y, min(x, y)), s(twice(min(x, y))))
TWICE(s(x)) → TWICE(x)
F(s(x), s(y)) → MIN(x, y)
F(s(x), s(y)) → -1(y, min(x, y))

The TRS R consists of the following rules:

-(x, 0) → x
-(s(x), s(y)) → -(x, y)
min(x, 0) → 0
min(0, y) → 0
min(s(x), s(y)) → s(min(x, y))
twice(0) → 0
twice(s(x)) → s(s(twice(x)))
f(s(x), s(y)) → f(-(y, min(x, y)), s(twice(min(x, y))))
f(s(x), s(y)) → f(-(x, min(x, y)), s(twice(min(x, y))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
QDP
      ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

-1(s(x), s(y)) → -1(x, y)
F(s(x), s(y)) → -1(x, min(x, y))
F(s(x), s(y)) → F(-(x, min(x, y)), s(twice(min(x, y))))
MIN(s(x), s(y)) → MIN(x, y)
F(s(x), s(y)) → TWICE(min(x, y))
F(s(x), s(y)) → F(-(y, min(x, y)), s(twice(min(x, y))))
TWICE(s(x)) → TWICE(x)
F(s(x), s(y)) → MIN(x, y)
F(s(x), s(y)) → -1(y, min(x, y))

The TRS R consists of the following rules:

-(x, 0) → x
-(s(x), s(y)) → -(x, y)
min(x, 0) → 0
min(0, y) → 0
min(s(x), s(y)) → s(min(x, y))
twice(0) → 0
twice(s(x)) → s(s(twice(x)))
f(s(x), s(y)) → f(-(y, min(x, y)), s(twice(min(x, y))))
f(s(x), s(y)) → f(-(x, min(x, y)), s(twice(min(x, y))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 4 SCCs with 4 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
QDP
            ↳ QDPOrderProof
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

TWICE(s(x)) → TWICE(x)

The TRS R consists of the following rules:

-(x, 0) → x
-(s(x), s(y)) → -(x, y)
min(x, 0) → 0
min(0, y) → 0
min(s(x), s(y)) → s(min(x, y))
twice(0) → 0
twice(s(x)) → s(s(twice(x)))
f(s(x), s(y)) → f(-(y, min(x, y)), s(twice(min(x, y))))
f(s(x), s(y)) → f(-(x, min(x, y)), s(twice(min(x, y))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


TWICE(s(x)) → TWICE(x)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [25,35]:

POL(s(x1)) = 1/4 + (2)x_1   
POL(TWICE(x1)) = (1/4)x_1   
The value of delta used in the strict ordering is 1/16.
The following usable rules [17] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ PisEmptyProof
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

-(x, 0) → x
-(s(x), s(y)) → -(x, y)
min(x, 0) → 0
min(0, y) → 0
min(s(x), s(y)) → s(min(x, y))
twice(0) → 0
twice(s(x)) → s(s(twice(x)))
f(s(x), s(y)) → f(-(y, min(x, y)), s(twice(min(x, y))))
f(s(x), s(y)) → f(-(x, min(x, y)), s(twice(min(x, y))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
QDP
            ↳ QDPOrderProof
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

MIN(s(x), s(y)) → MIN(x, y)

The TRS R consists of the following rules:

-(x, 0) → x
-(s(x), s(y)) → -(x, y)
min(x, 0) → 0
min(0, y) → 0
min(s(x), s(y)) → s(min(x, y))
twice(0) → 0
twice(s(x)) → s(s(twice(x)))
f(s(x), s(y)) → f(-(y, min(x, y)), s(twice(min(x, y))))
f(s(x), s(y)) → f(-(x, min(x, y)), s(twice(min(x, y))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


MIN(s(x), s(y)) → MIN(x, y)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [25,35]:

POL(MIN(x1, x2)) = x_2   
POL(s(x1)) = 1 + x_1   
The value of delta used in the strict ordering is 1.
The following usable rules [17] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ PisEmptyProof
          ↳ QDP
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

-(x, 0) → x
-(s(x), s(y)) → -(x, y)
min(x, 0) → 0
min(0, y) → 0
min(s(x), s(y)) → s(min(x, y))
twice(0) → 0
twice(s(x)) → s(s(twice(x)))
f(s(x), s(y)) → f(-(y, min(x, y)), s(twice(min(x, y))))
f(s(x), s(y)) → f(-(x, min(x, y)), s(twice(min(x, y))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
QDP
            ↳ QDPOrderProof
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

-1(s(x), s(y)) → -1(x, y)

The TRS R consists of the following rules:

-(x, 0) → x
-(s(x), s(y)) → -(x, y)
min(x, 0) → 0
min(0, y) → 0
min(s(x), s(y)) → s(min(x, y))
twice(0) → 0
twice(s(x)) → s(s(twice(x)))
f(s(x), s(y)) → f(-(y, min(x, y)), s(twice(min(x, y))))
f(s(x), s(y)) → f(-(x, min(x, y)), s(twice(min(x, y))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


-1(s(x), s(y)) → -1(x, y)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [25,35]:

POL(-1(x1, x2)) = x_2   
POL(s(x1)) = 1 + x_1   
The value of delta used in the strict ordering is 1.
The following usable rules [17] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ PisEmptyProof
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

-(x, 0) → x
-(s(x), s(y)) → -(x, y)
min(x, 0) → 0
min(0, y) → 0
min(s(x), s(y)) → s(min(x, y))
twice(0) → 0
twice(s(x)) → s(s(twice(x)))
f(s(x), s(y)) → f(-(y, min(x, y)), s(twice(min(x, y))))
f(s(x), s(y)) → f(-(x, min(x, y)), s(twice(min(x, y))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
QDP

Q DP problem:
The TRS P consists of the following rules:

F(s(x), s(y)) → F(-(x, min(x, y)), s(twice(min(x, y))))
F(s(x), s(y)) → F(-(y, min(x, y)), s(twice(min(x, y))))

The TRS R consists of the following rules:

-(x, 0) → x
-(s(x), s(y)) → -(x, y)
min(x, 0) → 0
min(0, y) → 0
min(s(x), s(y)) → s(min(x, y))
twice(0) → 0
twice(s(x)) → s(s(twice(x)))
f(s(x), s(y)) → f(-(y, min(x, y)), s(twice(min(x, y))))
f(s(x), s(y)) → f(-(x, min(x, y)), s(twice(min(x, y))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.